首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253377篇
  免费   5305篇
  国内免费   3304篇
测绘学   6986篇
大气科学   19206篇
地球物理   52874篇
地质学   87623篇
海洋学   21508篇
天文学   54712篇
综合类   1012篇
自然地理   18065篇
  2021年   2206篇
  2020年   2601篇
  2019年   2869篇
  2018年   3499篇
  2017年   3186篇
  2016年   5735篇
  2015年   4252篇
  2014年   6963篇
  2013年   14343篇
  2012年   6526篇
  2011年   7852篇
  2010年   6840篇
  2009年   9546篇
  2008年   8348篇
  2007年   7799篇
  2006年   9691篇
  2005年   7745篇
  2004年   7666篇
  2003年   7015篇
  2002年   6648篇
  2001年   5914篇
  2000年   5602篇
  1999年   4825篇
  1998年   4857篇
  1997年   4635篇
  1996年   4221篇
  1995年   4311篇
  1994年   4011篇
  1993年   3762篇
  1992年   3521篇
  1991年   3531篇
  1990年   3633篇
  1989年   3337篇
  1988年   3169篇
  1987年   3717篇
  1986年   3253篇
  1985年   4127篇
  1984年   4629篇
  1983年   4321篇
  1982年   4224篇
  1981年   3849篇
  1980年   3596篇
  1979年   3437篇
  1978年   3438篇
  1977年   3222篇
  1976年   2963篇
  1975年   2901篇
  1974年   2870篇
  1973年   3075篇
  1972年   1991篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
21.
Base flows are important for tropical regions with pronounced dry seasons, which are facing increasing water demands. Base flow generation, however, is one of the most challenging hydrological processes to characterize in the tropics. In many years during the May–December wet season in the Panama Canal Watershed (PCW), base flows in rivers abruptly increase. This increase persists until the start of the December–April dry season. Understanding this unusual base flow jump (BFJ) behaviour is critical to improve water provisioning in the seasonal tropics, especially during droughts and extended dry seasons. This study developed an integrated approach combining piecewise regression on cumulative average base flow and sensitivity analysis to calculate the timing and magnitude of BFJ. Rainfall, forest cover, mean land surface slope, catchment area, and estimated subsurface storage were tested as predictors for the occurrence and magnitude of the BFJs in seven subcatchments of the PCW. Sensitivity analysis on correlated predictors allowed ranking of predictor contributions due to isolated and cross-correlation effects. Correlations between observed BFJs and BFJs predicted by watershed and rainfall-related predictors were 0.92 and 0.65 for BFJ timing and magnitude, respectively. Forest cover was the second most significant predictor after cumulative rainfall for jump magnitude, owing to larger subsurface storage and groundwater recharge in forests than pastures. Catchments in the mountainous eastern PCW always generated larger jumps due to their higher rainfall and greater forest cover than the western PCW catchments. The cross-correlations between predictors contributed to more than 50% of the jump variances. The results demonstrate the importance of rainfall gradient and catchment characteristics in affecting the sudden and sustained BFJs, which can help inform land management decisions intended to enhance water supplies in the tropics. This study underscores the need for more research to further understand the hydrological processes involved in the BFJ phenomenon, including better BFJ models and field characterizations, to help improve tropical ecosystem services under a changing environment.  相似文献   
22.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   
23.
The Hammond Hill Research Catchment (HH) is a small (120 ha), temperate, second order tributary to Six Mile Creek, Cayuga Lake, and the Great Lakes (42.42°, −76.32°). The HH has been monitored since January 2017 for the purpose of understanding how recent infiltration mixes with antecedent soil water on hillslope forest floors and the spatial and temporal patterns of Root Water Uptake (RWU) by temperate northeastern US tree species (eastern hemlock [Tsuga canadensis], American beech [Fagus grandifolia], and sugar maple [Acer saccharum]). These data are informing us about the hydrologic consequences of anticipated tree species composition change and supporting the development of more refined ecohydrological models. The glaciated catchment is underlain by a shallow confining siltstone layer (1–1.5 m depth) and densely covered with an approximately 60 year old regrowth mixed species forest of hemlock, beech, and other deciduous tree species common to the northeastern US. Current datasets from the HH include precipitation snow water equivalent, discharge, and associated isotopic water compositions, δ2H & δ18O. Measurements of (top 10 cm) soil water content, as well as bulk soil water and hemlock and beech xylem isotopic compositions are made at several locations across a topographic wetness gradient. The near-term role of the HH is to support an understanding of the environmental and ecological drivers of plant RWU competition. All data from the HH are publicly available.  相似文献   
24.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   
25.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
26.
27.
Beskin  V. S.  Zagorulia  D. S.  Istomin  A. Yu. 《Astronomy Letters》2021,47(10):686-694
Astronomy Letters - The birth function of neutron stars in magnetic field $$B$$ is estimated for two models of the evolution of radio pulsars corresponding to different directions of evolution of...  相似文献   
28.
Theoretical and Applied Climatology - Indian summer monsoon rainfall (ISMR) variability of ± 10% of its long-term mean leads to flood and drought, affecting the life and economic...  相似文献   
29.
Geomagnetism and Aeronomy - Based on data from long-term observations at two geophysical observatories, Borok and College, distantly spaced in latitude and longitude, the results of remote...  相似文献   
30.
摘要:目的 探讨菌株Salinivibrio sp.YH4分泌的丝氨酸蛋白酶EYHS的耐盐性及结构特征。方法 明胶底物酶谱法分析EYHS的耐盐性。应用生物信息学手段对EYHS及6种耐盐的S8家族丝氨酸蛋白酶结构特征进行分析。结果 EYHS在4 mol/L的NaCl溶液中仍具有活性,属于耐盐蛋白酶。EYHS及6种S8家族丝氨酸蛋白酶分子表面的loop区等无规则卷曲所占比例较高,α-螺旋与β-片层则主要位于酶分子内部。EYHS分子表面酸性氨基酸含量较高,且具有弱疏水内核。多序列比对发现蛋白酶的催化三联体两侧存在高度保守的基序和保守的极性氨基酸及芳香族氨基酸,并存在多个保守的Gly与Ala。同源模建和表面电荷分布显示,α螺旋和β片层围成了蛋白酶的催化腔,EYHS活性中心包含由Asp32、His65与Ser215组成的催化三联体,且催化位点区域表面静电势为负。结论 上述结构特征可能有助于耐盐丝氨酸蛋白酶EYHS在高盐环境下维持其稳定性和适度柔性,并有助于其催化功能的发挥,为深入研究耐盐丝氨酸蛋白酶的高盐环境适应性提供了一定的理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号